a2 United States Patent

Ivanov et al.

US009256413B2

US 9,256,413 B2
Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

AUTOMATIC IDENTIFICATION OF
SERVICES

Inventors: Radoslav Ivanov, Sofia (BG); Shenol
Yousouf, Sofia (BG); Georgi Stanev,
Sofia (BG)

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 344 days.

Appl. No.: 13/448,668

Filed: Apr. 17, 2012
Prior Publication Data

US 2013/0275958 Al Oct. 17, 2013

Int. CI.

GOGF 9/44 (2006.01)

GOGF 9/445 (2006.01)

U.S. CL

CPC oo GO6F 8/61 (2013.01)

Field of Classification Search

CPC GOG6F 11/30; GOG6F 17/30;, GOGF 8/70;
GOG6F 8/60; GOGF 8/65

USPC e 717/168, 174

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0007067 Al* 1/2009 Hepperetal. 717115

2011/0239195 Al* 9/2011 Linetal. 717126

2012/0081395 Al* 42012 Adietal. 345/634

2012/0089971 Al* 4/2012 Williams et al. .. 717167

2013/0227542 Al* 82013 Peietal. ... 717/170
OTHER PUBLICATIONS

Skar, “Towards best practices in Cloud Computing”, Oct. 14, 2009,
pp. 76.*

Berre, “Dependency Management for the Eclipse Ecosystem Eclipse
p2, metadata and resolution”, Aug. 24, 2009, p. 1-10.*

Lindberg, “Eclipse Buckminster the Definitive Guide”, Sep. 4, 2009,
pp. 268.*

* cited by examiner
Primary Examiner — Duy Khuong Nguyen
57 ABSTRACT

In one aspect, a metadata of an application is received. The
metadata describes a number of artifacts of the computer
application. Based on a reference in the application metadata,
atleast one service that the application is configured to access
is determined. In another aspect, additional metadata describ-
ing artifacts associated with the at least one service are iden-
tified. The artifacts associated with the at least one service and
the artifacts of the computer application are selected for
installation of the computer application.

14 Claims, 7 Drawing Sheets

/ 300

START

|~310
DEVELOP AN APPLICATION
|~320
PUBLISH THE APPLICATION
GENERATE METADATA OF THE APPLICATION 330
DETERMINE AT LEAST ONE SERVICE REFERENCED INTHE | ~340
APPLICATION METADATA
IDENTIFY ADDITIONAL METADATA ASSOCIATED WITH THE AT |~ 350
LEAST ONE SERVICE
STORE METADATA OF THE APPLICATION AND THE 360
ADDITIONAL METADATA IN A COMPOSITE REPOSITORY
BASED ON INFORMATION INCLUDED IN THE COMPOSITE 370
REPOSITORY, INSTALL THE APPLICATION TOGETHER WITH |~
THE AT LEAST ONE SERVICE ON THE CLOUD

US 9,256,413 B2

Sheet 1 of 7

Feb. 9, 2016

U.S. Patent

L Old
051
anoio TOT ¥3AIAOYd WHOHLY1d INILNNY
097 .X. 1LONA0¥d S0T WHO4LV1d INILNNY
«_m_w@m_w otk
NOLLYSTady HIAYIS NOILYOITddY
TIT (4% LNIWIOVNYIN SoIANES 80
a1 N, eoo] ALILNIQI ST 1 ToIANES
30IANTS ERIER 027 .z, I0IAY3S b
A Dy A
w\/\g _/
- \. /—
081 orl GEl ocl
X, M, ceo Z. 1,
NOILYDI1ddV NOILYDITddY NOILLYDITddV NOILLYDI1ddV
THT I0IANIS ANOTD 40 HINOLSND

4ﬁll|.cov

US 9,256,413 B2

Sheet 2 of 7

Feb. 9, 2016

U.S. Patent

¢ 9ld
(T4
31NAOW 55T
— 3TINAON —
(¥4 Ak Z9¢ b4
£, 31NAON 31NAO 31NAON
IDIAYIS < N — : —
0.¢ — 05¢
M, 09¢ d,
| ALITYNOILDONNA O, ALITYNOILONNA
597 — ALITVYNOILONNA
3INaon sve —
T FINaon [N\ (1] 74
nxu
— ALITYNOILONNA
114 (¥4
ITNAOW 2
IDIAYTS — 7z p—
3INA0ON I1NAOW 3INA0ON
(744 08¢ 0¢C [iY44
ﬁ MI_DDO_\/_ _Z_ “N_ .—3
J1NAON ALITYNOILONNA ALITYNOILONNA | | ALITYNOILONNA
[]¥4
WA 01¢
ERINNER v,
NOILYDIddY

06¢
X,

WHO41Y1d INILNNA

U.S. Patent Feb. 9, 2016 Sheet 3 of 7 US 9,256,413 B2

’/ 300

/31 0
DEVELOP AN APPLICATION
Y
/320
PUBLISH THE APPLICATION
GENERATE METADATA OF THE APPLICATION /330

A 4

DETERMINE AT LEAST ONE SERVICE REFERENCED IN THE /340
APPLICATION METADATA

!

IDENTIFY ADDITIONAL METADATA ASSOCIATED WITH THE AT f350
LEAST ONE SERVICE

A 4

STORE METADATA OF THE APPLICATION AND THE 360
ADDITIONAL METADATA IN A COMPOSITE REPOSITORY

Y
BASED ON INFORMATION INCLUDED IN THE COMPOSITE 370

REPOSITORY, INSTALL THE APPLICATION TOGETHER WITH [~
THE AT LEAST ONE SERVICE ON THE CLOUD

END

FIG. 3

U.S. Patent Feb. 9, 2016

MODULE
o
1U 420

MODULE
o
1U 430

?
MODULE

MODULE
A U 432

Sheet 4 of 7

APPLICATION
"
IU 410

U 422 MODULE
U 434

K

MODULE
P
U 450

A 4

PLUGIN ‘A’
U 482

MODULE] || MODULE
U 438 U 452
MODULE
U 454

SERVICE
i1l
IU 480

PLUGIN ‘B’| B FEA‘QJRE
U 484 U 488

PLUGIN C
:‘U 486 SERVICE

2!

MODULE

US 9,256,413 B2

’/ 400

MODULE
U 472

MOFF);"LE e |MODULE
IU 470 U474

FEATURE

v’

U 489

MODULE
U 478

401

p4

FEATURE

1U 495

RUNTIME PLATFORM ‘X

405

FIG. 4

U.S. Patent Feb. 9, 2016 Sheet 5 of 7 US 9,256,413 B2

-

RECEIVE APLICATION METEDATA, WHERE THE METDATA /.510
REPRESENTS A FIRST GRAPH OF DEPENDENCIES BETWEEN
INSTALLABLE UNITS (1Us) OF THE APPLICATION

v

IDENTIFY ALL MODULES REQURED BY THE APPLICATION IUs /'520

v

RECEIVE RUNTIME PLATFORM METEDATA, WHERE THE METADATA
REPRESENTS A SECOND GRAPH OF DEPENDENCIES BETWEEN IUs OF /530
THE RUNTIME PLATFORM

v

SEARCH IN THE SECOND GRAPH FOR ALL IUs THAT PROVIDE THE /540
REQUIRED MODULES

v

CREATE A LIST WITH THE IDENTIFIED IUs THAT PROVIDE THE /550
REQUIRED BY THE APPLICATION MODULES

v

SELECT A IU FROM THE LIST WITH IDENTIFIED 1Us THAT IS NOT /560
TRAVERSED

v

/570
MARK THE SELECTED IU AS TRAVERSED

YES ADD THE SELECTED IU TO A
COLLECTION OF IUs THAT
DESCRIBE SERVICES

DOES THE
SELECTED IU DESCRIBE A
SERVICE?

580\ NO

ONE OR MORE IUs THAT PROVIDE
THE SELECTED IU ARE ADDED TO

590

THE LIST ARE ALL
NO IUs THAT DESCRIBE
V< SERVICES ALREADY IN
595 THE COLLECTION
NO AREN YES
IUSIN THE LIST » YES
TRAVERSED? A 4
END

FIG. 5

US 9,256,413 B2

Sheet 6 of 7

Feb. 9, 2016

U.S. Patent

9 Old
989 NI 89 NI 289 NI
D, 4, Y, [
|H H H <SIUINDIY>
S, 3OOV
2, AOVIIVd <S3AINOYd>
8, ADVMOVd 779 |
v, AOVMOVd v, 3TNAdON
<S3AIAOYd>
689 NI 889 NI H
A, JdN1v3S X, 3dNLY3d S, A9VMOVd
H H <STUINDIN>
C7, 39WMOVd Y 3TNAON, IOVIIVd
<SFHINOIY> <S3AINOYd>
A FHNLYIS, IOVYIOVC
X HNLYIS, IOVMOVd 55 NI 759 NI 029 NI
— — <S3AINOYd> M, I1naon .z, I31naon b, ITNACK
S69 NI 069 NI 989 NI
Z, 3dNLv3ad||.c, IDINGIS L, IoIAY3S |H H HI
H H Hl X WHO41Y1d, 39OVIIVd
S, 3OVMOVd <SFHINOIY>

Z JdNLV3d, 39VAOVd
€ A0INGTS, IOVHAOVd
1 IDINGTS, IOYMOVd

X, WHO41V1d JNILNNY

<S3AINOYd>

109 NI

.2 ITNAOW, ADVIOVd
L ITINAON, IDOVMOVd
<S3AINOYd>
019 NI
Y, NOILYDI1ddV

/ 009

U.S. Patent Feb. 9, 2016 Sheet 7 of 7 US 9,256,413 B2

700 \

Vs NETWORK 750

PROCESSOR OUTPUT DEVICE
705 @S li> 725

- > INPUT DEVICE

STORAGE 71 730

NETWORK
RAM 715 < > COMMUNICATOR [«
135
DATA SOURCE N] MEDIA READER
INTERFACE 720 Y4 740
N4
155
DATA
SOURCE

760

FIG. 7

US 9,256,413 B2

1
AUTOMATIC IDENTIFICATION OF
SERVICES

BACKGROUND

Cloud computing is a widely adopted concept. Generally,
cloud computing refers to a model for enabling ubiquitous,
convenient, and on-demand access to shared pools of config-
urable computing resources such as networks, servers, stor-
ages, applications, functionalities, and the like. There are a
number of benefits associated with cloud computing for both
the providers of the computing resources and their customers.
For example, customers may develop and deploy various
business applications on a cloud infrastructure supplied by a
cloud provider without the cost and complexity to procure
and manage the hardware and software necessary to execute
the applications. The customers do not need to manage or
control the underlying cloud infrastructure, e.g., including
network, servers, operating systems, storage, etc., but still
have control over the deployed applications and possibly over
the configuration settings of the application-hosting environ-
ment. On the other hand, the provider’s computing resources
are available to provide multiple customers with different
physical and virtual resources dynamically assigned and reas-
signed according to clients’ load.

Typically, cloud providers offer common computing
resources as services to their customers. Providers may sup-
ply these services as demanded and requested by their cus-
tomers to meet their specific needs and requirements. Gener-
ally, customers may choose to enrich their business
applications with only some of the offered services. Usually,
to do that, customers may have to manually select the desired
services. This may be cumbersome and prone to errors. For
example, a customer may fail to select the proper services on
which functionality the business application actually depends
on. This may cause the application to work improperly when
deployed and installed on the cloud. Alternative scenario may
be selecting and installing all available services regardless of
what services the business application actually is configured
to access. However, such an alternative results in higher total
cost of ownership, since unnecessary computing resources
are consumed and provisioned. Another negative effect may
be obscuring the monitoring, controlling, and reporting of the
actual usage of the computing resources, resulting in less
transparency for both the provider and the consumer of the
utilized services.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments of the invention with
particularity. The invention is illustrated by way of example
and not by way of limitation in the figures of the accompa-
nying drawings in which like references indicate similar ele-
ments. The embodiments of the invention, together with its
advantages, may be best understood from the following
detailed description taken in conjunction with the accompa-
nying drawings.

FIG. 1 illustrates an exemplary computer system landscape
for deploying customer applications in cloud environment,
according to one embodiment.

FIG. 2 illustrates application that encompasses a number of
functionalities, according to one embodiment.

FIG. 3 illustrates a process for installing a computer appli-
cation on a cloud configured to access at least one service,
according to one embodiment.

FIG. 4 illustrates a structure of installable units (IUs) cor-
responding to the metadata of an application and a structure of

20

25

40

45

60

65

2

1Us corresponding to the metadata of a runtime platform,
according to one embodiment.

FIG. 5illustrates a process for automatic identification ofat
least one service to be accessed by an application, according
to one embodiment.

FIG. 6 illustrates content and structure of I[Us of an appli-
cation that is configured to access at least one service, accord-
ing to one embodiment.

FIG. 71s ablock diagram of an exemplary computer system
to execute computer readable instructions for automatic iden-
tification of services, according to one embodiment.

DETAILED DESCRIPTION

Embodiments of techniques for automatic identification of
services are described herein. In the following description,
numerous specific details are set forth to provide a thorough
understanding of embodiments of the invention. One skilled
in the relevant art will recognize, however, that the invention
can be practiced without one or more of the specific details, or
with other methods, components, materials, etc. In other
instances, well-known structures, materials, or operations are
not shown or described in detail to avoid obscuring aspects of
the invention.

Reference throughout this specification to “one embodi-
ment”, “this embodiment” and similar phrases, means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, the appearances
of these phrases in various places throughout this specifica-
tion are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or character-
istics may be combined in any suitable manner in one or more
embodiments.

FIG. 1 shows an exemplary computer system landscape
100 for deploying customer applications in cloud environ-
ment, according to one embodiment. Runtime platform 105
may be developed and maintained by runtime platform pro-
vider 101. There are a number of vendors that provide com-
mercial runtime platforms. Just as an example, SAP AG pro-
vides SAP® NetWeaver® Neo, a Java® based Platform-as-
a-Service offering that makes it possible for partners and
customers of SAP AG to deploy and use Java® application in
a cloud environment. In one embodiment, runtime platform
105 includes application server 110 as a core part for building
runtime environment based on the runtime platform 105. For
example, the application server may be a Java® application
server for executing Java® based applications. In another
example, the application server 110 may be a webserver to
provide environment for execution of web based applications.

In one embodiment, the runtime platform 105 may include
anumber of services 115-125 which provide additional runt-
ime functionality that the applications 130-140 may be con-
figured to access and consume. A service may be any type of
functionality or feature that may be accessed and used by
applications 130-140 and other such services. Services may
be logical entities that may be distinctly used, imported,
accessed or otherwise referenced. Various types of computing
resources may be represented as services. One example of
service may be a persistency or database service such as
illustrated service ‘1’ 115. The persistency service may pro-
vide access to a relational database for applications 130-140
to be deployed and hosted on cloud 150. The persistence
service 115 may provide a default schema in which tables can
be created and data stored for one or more applications from
applications 130-140 that are configured to use the service.
The persistence service may provide connection parameters,

US 9,256,413 B2

3

such as URLs, drivers, and users, and also may perform other
tasks such as backup and recovery, load balancing, and scal-
ing.

Another example of a service may be identity management
such as illustrated service ‘2” 120. The identity management
service may provide a central user store for identities that
require access to protected resources of one or more applica-
tions from applications 130-140 that are configured to use the
service once deployed and installed on cloud 150. The iden-
tity management service may also provide a single sign-on
(SSO) access to users of applications 130-140 that are con-
figured to use the identity management service. Other
examples may include, but are not limited to, connectivity
service that provides a secure and reliable access to applica-
tions, document service that provides a content repository for
unstructured or semi-structured content, mail service that
may enable transmission of electronic mail messages from
applications that are configured to access, import, or other-
wise use the service, and the like. In one aspect, the runtime
platform 105 may also be supplied and offered by the runtime
platform provider 101 as a service.

A customer of cloud services may develop and deliver one
or more applications to be executed in cloud environment.
The functionality provided by such applications may be
accessed on the cloud by a number of consumers, e.g., related
to the customer. As illustrated in FIG. 1, applications 130-140
are delivered by one or more customers 145, e.g., of the
runtime platform provider 101. The different applications
130-140 may require, use, and depend on different runtime
components for their execution. For example application ‘1’
130 may be configured to access services ‘1’115, 2120 and
‘N” 125, while applications ‘2’ 135 and ‘K’ 140 may be
configured to access just service ‘2° 120. In one embodiment,
the applications 130-140 provided by one or more of custom-
ers 145 may be configured to access different subsets of the
components of the runtime platform 105. The different sub-
sets may have a common intersection, e.g., application server
110 and a subset of the services 115-125 required by all
applications 130-140. As illustrated in FIG. 1, customers 145
may use one or more of the offered services 115-125 based on
the specific requirements of the developed applications 130-
140. Thus, customers 145 may reuse and utilize common
functionalities and computing resources that are already
offered by runtime platform provider 101. The availability of
services on-demand frees customers 145 from the responsi-
bility to provide and manage the utilized platform function-
ality and enables customers 145 to focus on developing the
business logic of the applications 130-140.

In one embodiment, a consumer request or another event
may invoke the execution of a customer application in a cloud
environment. According to the characteristics of the cloud
environment, the invocation of the application may cause its
provisioning, installation and starting, together or after the
deployment of the necessary runtime platform. FIG. 1 illus-
trates customer application ‘X’ 180 deployed on cloud 150
together with application server 170 and service ‘L’ 175. For
example, application server 170 may include a subset of the
components of application server 110 that are necessary for
executing application ‘X’ 180 Similarly, service ‘I’ 175 may
be one of services 115-125 that is required and used by the
application ‘X’ 180.

Typically, application ‘X’ 180, service ‘I’ 175 and appli-
cation server 170 are described or merged together in product
‘X’ 160, according to one embodiment. The definition of
product ‘X’ 160 may be based on the characteristics and the
requirements of the application ‘X’ 180. The packaging of
application ‘X’ 180 together with the prerequisite runtime

40

45

55

4

platform components, e.g., application server 170 and service
‘L’ 175, facilitates the installation of the application ‘X’ 180
on the cloud 150. In one embodiment, the required services
are determined in order to package application ‘X’ 180
together with the prerequisite runtime platform components.
According to one embodiment, identification of services used
and consumed by a computer application is implemented
automatically, according to one embodiment. Once identi-
fied, only the necessary services together with other prereq-
uisite platform components and the application are installed
on cloud 150. Thus, no redundant computing resources are
consumed. Further, the proper services used by the applica-
tion are automatically determined and installed, eliminating
possible errors associated with manually selecting the needed
services. For example, instead of installing all available ser-
vices 115-125 only service ‘L’ 175 is installed together with
application ‘X’ 180.

There are different technology solutions that implement
provisioning of applications to cloud environment together
with a base product, e.g., the runtime platform such as runt-
ime platform 105. One example for such technology includes
p2® provisioning platform for Eclipse®-based applications.
Eclipse® is an open source community, whose projects are
focused on building an open development platform composed
of extensible frameworks, tools and runtimes for building,
deploying and managing software across lifecycle. The p2®
platform is part of the Equinox® project of Eclipse®. An
Eclipse®-based product is a stand-alone program, e.g., self-
contained and installable software application, built using the
Eclipse® development platform. In one embodiment,
Eclipse® provisioning mechanism p2® may be utilized to
generate, validate and install product ‘X’ 160 based on the
definitions of application ‘X’ 180 provided by customer 145,
and further based on the definitions of runtime platform 105.

FIG. 2 illustrates application ‘A’ 210 that encompasses a
number of functionalities, including functionality “1” 220,
functionality ‘2’ 230, functionality ‘K’ 240, functionality ‘P’
250, functionality ‘O’ 260, functionality ‘R’ 270 and func-
tionality ‘N’ 280. A functionality may be determined by one
or more modules, such as modules 222, 232, 252, 262, 272
and 282, accordingly. A module may represent a logically,
functionally, programmatically, or otherwise distinct soft-
ware component providing a particular element or character-
istic of the corresponding functionality. For example, if appli-
cation ‘A’ 210 is a web application, functionality ‘2’ 230 may
provide email service, functionality ‘K’ 240 may provide a
number of social networking capabilities, and so on.

The different functionalities and modules of an application
may be related to and dependent on each other, e.g., two or
more application modules may have to be executed in a spe-
cific order. Moreover, the different functionalities and mod-
ules of the application may be further configured to access,
consume, and depend on one or more services offered by a
runtime platform provider. In one embodiment, a graph or
hierarchy may be defined among the functionalities and mod-
ules, where one functionality or module is subordinate to,
dependent on, associated with, or included in another func-
tionality or module. In one embodiment, a hierarchy may be
defined among the functionalities, where one functionality is
subordinate to, dependent on or included in another function-
ality. As FIG. 2 shows, functionality ‘R’ is included in func-
tionality ‘Q’ 260, which in turn is subordinate to functionality
‘K’ 240 together with functionality ‘P’ 250. For example,
functionality ‘P’ 250 could provide messaging service as part
of the social network services provided by functionality ‘K’
240. Further, a graph of dependencies among the functional-
ities may be defined, where functionalities are associated to

US 9,256,413 B2

5

each other without necessarily being in hierarchical relation-
ship. For example, functionality ‘P’ 250 may be related to
functionality ‘Q’ 260 as both may provide particular element
of functionality ‘K’ 240, which as illustrated encompasses
both. In one embodiment, dependencies and relationships
among the different functionalities and modules may be
implemented with p2®, however, other techniques may also
be used.

Further, FIG. 2 shows a runtime platform ‘X’ 290 that
encompasses a number of functionalities (not illustrated),
including service ‘1’215, service ‘2°235, and service ‘3’ 275.
Further, other functionalities may be included in the runtime
platform ‘X’ 290, such as based on modules 205 and 295.
Services 215, 235 and 275 may be determined by and based
on one or more modules 225, 245, 255, 265, and 285. There-
fore, the different functionalities of runtime platform ‘X290
may also be related to and dependent on each other. In one
embodiment, a graph or hierarchy may be defined among the
functionalities of the runtime platform ‘X’ 290, where one
functionality is subordinate to, dependent on, associated
with, or included in another functionality.

In one embodiment, a functionality or module of applica-
tion ‘A’ 210 may be configured to access, use, or import a
service provided by runtime platform ‘X’ 290. For example,
functionality ‘N’ 280 may provide user authentication. The
implementation of the user authentication may use service ‘2’
235 part of runtime platform X’ 290, which may be identity
management service. Therefore, as illustrated, module 282
part of the user authentication provided by functionality ‘N’
280 may refer to module 245 part of the identity management
service ‘2° 235 Similarly, functionality ‘Q’ 260 may refer to
service ‘3’ 275. A functionality or module of an application
may be configured to access other modules or functionalities
part of a runtime platform that are not included in specified
services, e.g., functionality ‘R’ 270 may be configured to
access and use module 295.

In one embodiment, a service (e.g., modules 225, 245, 255,
265, 285) may include two parts, an application programming
interface (API) and an implementation of the service. The
API of a service is the part of the service that can be directly
imported and referenced by an application that is to be
installed on a runtime platform. Thus, the implementation
may be modified without affecting how the service is refer-
enced and used. Usually, a package such as Java® package
represented by a Java® Archive (JAR) file representing the
API and another package representing the implementation
are grouped in one feature representing the service. A feature
may correspond to a particular functionality of the product or
the application, and usually groups a number of unitary soft-
ware components that could be managed together as a single
entity. According to the terminology adopted in Eclipse®
projects, such unitary software components are called plu-
gins. The plugins are the basic installable and executable units
or software code structures.

FIG. 3 shows process 300 for installing a computer appli-
cation on a cloud configured to access at least one service,
according to one embodiment. A computer application is
developed at 310. In one embodiment, a customer of a cloud
runtime platform develops an application to be installed on
the cloud runtime platform. The computer application may be
configured to access at least one service of the cloud runtime
platform. At 320 the application is published. In one embodi-
ment, the publishing of the application refers to p2® publish-
ing. Publishing of the application may involve compiling the
application and copying files of the application to a p2®
repository of the application. A URL-accessible location,
such as a remote server or local file system location could be

10

15

20

25

30

35

40

45

50

55

60

65

6

a p2® repository. At 330, during the publishing of the appli-
cation, metadata of the application is generated.

In one embodiment, the metadata describes dependencies
and relationships existing among the different modules and
functionalities of the application. The relationships among
the application modules may be defined during their devel-
opment and/or their configuration. Two or more application
modules may have to be executed in a specific order; the result
of the execution of one module may be a condition for the
execution of another; two or more unitary modules may be
related in a composite module; etc.

In one embodiment, the metadata includes at least one
installable unit. In the terms of the p2® provisioning plat-
form, installable unit (IU) describes a component that can be
installed, updated and uninstalled. The IUs do not contain
actual artifacts, but information or metadata about such arti-
facts, including names, versions, identifiers, dependencies,
capabilities, requirements, etc. An artifact may refer to the
content or program code being installed or managed, e.g.,
bundles, binary archives, executable files, etc. A bundle refers
to Open Services Gateway initiative (OSG1) file similar to
JAR files. In one embodiment, the metadata of the application
together with the installable artifacts of the application are
stored in a p2® repository of the application.

Separate [Us may be generated for the modules and the
functionalities of the application, and even for the application
itself. In one embodiment, different modules and functional-
ities of the application may be represented as features and
plugins in the context of the p2® provisioning platform.
Usually, the application corresponds to a main or root [U, and
the modules are the peripheral, subordinate, or leaf [Us. FIG.
4 illustrates a structure of IUs.

At 340, at least one service referenced in the application
metadata is determined Often, an IU of a module includes a
requirement expression containing a reference to a function-
ality that is a prerequisite for the proper working of the mod-
ule. Thus, one package may import another package. The
required or imported at least one service may be determined
based on such requirement expressions included in one or
more [Us of the application metadata. At 350, additional
metadata associated with the at least one service is identified
in the metadata of the cloud runtime platform. In one embodi-
ment, the IU describing the determined at least one service is
added to a collection, group or list with IUs describing ser-
vices that are prerequisite for the installation of the applica-
tion.

At 360, the metadata of the application and the identified
additional metadata associated with the service are stored in a
composite repository. In one embodiment, the composite
repository includes metadata of the application, installable
artifacts of the application, and metadata of the service part of
the runtime platform that are prerequisite for the installation
of'the application. At 370, based on the information included
in the composite repository, the application is installed on the
cloud runtime platform together with the at least one service.
In one embodiment, at least one virtual machine is instanti-
ated in a cloud runtime platform. The application and the at
least one service are installed on the virtual machine

FIG. 4 shows a structure of [Us 400 corresponding to the
metadata of an application, according to one embodiment.
Application ‘A’ IU 410 is the root IU of the metadata of
application ‘A’. For example, application ‘A’ IU 410 may
correspond to application ‘A’ 210 in FIG. 2. Accordingly, the
1Us 420-478 in FI1G. 4 may correspond to the different com-
ponents (functionalities and modules) 220-282 of application
‘A’ 210 in FIG. 2. In one embodiment, modules 420-478 may
be represented as features or plugins.

US 9,256,413 B2

7

The application ‘A’ root IU 410 refers to module ‘1’ 1U 420,
module ‘2°TU 430 and module ‘K’ IU 440. More specifically,
application ‘A’ provides capabilities provided by the modules
corresponding to the [Us 420-478. Further, module ‘1’ TU 420
refers to module 1U 422; module ‘2’ IU 430 refers to module
1U 432-438; module ‘K’ IU 440 refers to module ‘P” IU 450
and to module ‘Q’ IU 460. Further, module ‘P’ IU 450 refers
to module IUs 452-454 and module ‘Q’ TU 460 refers to
module ‘R’TU 470. These references specify dependencies or
relationships among the functionalities corresponding to the
modules of application ‘A’ as described in metadata. The
relationships among the modules or functionalities of an
application may form a graph structure different from a tree,
where the IU corresponding to the application may still be on
the highest hierarchical level.

Further, FIG. 4 shows a structure of IUs 401 corresponding
to the metadata of runtime platform ‘X’ 405. Similar to the
metadata of the application in the structure of 1Us 400, the
metadata of runtime platform ‘X’ 405 describes dependencies
or relationships among the functionalities of the runtime plat-
form ‘X’ 405. For example, service ‘1’ IU 480 refers to feature
‘X’ IU 488 and feature ‘Y’ U 489. More specifically, as
described in U 480, service ‘1’ provides or exports the func-
tionality of feature ‘X’ and feature ‘Y. Further, feature ‘X’
provides functionalities of modules described by 1Us 482-
486 of plugin ‘A’, plugin ‘B’, and plugin ‘C’, respectively. On
the other hand, service ‘1’ may not be related to service 2’ and
feature ‘7’ as illustrated by U 490 and U 495, respectively.

As illustrated in FIG. 4, module ‘A’ may be configured to
access or import plugin ‘A’ represented by [U 482 part of the
metadata of runtime platform X’ 405. Functionality of plugin
‘A’ is provided by feature ‘X’, which in turn is provided by
service ‘1°. Thus, IU 422 of module ‘A’ indirectly refers to
service ‘1’ by referencing metadata of a functionality that this
service provides. The services referenced directly or indi-
rectly by the application metadata, are identified and selected
for installation together with the application artifacts.

FIG. 5 illustrates a process 500 for automatic identification
of at least one service to be accessed by an application,
according to one embodiment. At 510, metadata of an appli-
cation is received. The metadata represents a first graph of
dependencies or relationships among [Us of the application,
e.g., structure 400 of [Us in FIG. 4. The application is to be
installed on a runtime platform such as runtime platform 105
in FIG. 1.

An U describes, among other things, capabilities and
requirements associated with the IU. Capabilities associated
with an [U refer to functionality that the application module
corresponding to the IU, provides. These capabilities may
satisfy requirements of other IUs. On the other hand, the
requirements associated with the IU refer to functionality that
the corresponding module necessitates as a prerequisite in
order to be installed or to work properly once installed.
Dependencies among different modules of an application
may be resolved based on capabilities and requirements of
1Us. At 520, the modules including services required,
imported or otherwise referenced by the application, but not
included in the application, are identified based on the
requirements specified in the [Us of the application.

At 530, metadata of the runtime platform is received. In
one embodiment, the runtime platform may be a cloud runt-
ime platform. The metadata of the runtime platform repre-
sents a second graph of dependencies or relationships among
1Us, e.g., structure 401 of IUs in FIG. 4. At 540, the IUs that
provide the functionality of the required modules are
searched for in the second graph of dependencies based on the
capabilities specified in the IUs of the runtime platform. In

15

40

45

55

8

one embodiment, a graph of dependencies among [Us may be
searched using a p2® querying language.

At 550, a list is created including the identified IUs of the
runtime platform that provide the modules required by the
application. In one embodiment, a stack or other data struc-
ture may be used to store the list of identified [Us.

At 560, an IU from the list with identified IUs that is not
traversed is selected. At 570, the selected IU is marked as
traversed. In one embodiment, by marking selected 1Us as
traversed, repetition of traversing the same [Us is avoided. At
575, a check is performed if the selected IU describes a
service. In one embodiment, an IU may include type infor-
mation for the corresponding module that the TU describes,
e.g., if the module is of type “service”. An example of such
type information may be represented as follows:

<property name="com.sap.jpaas.type”
value="service’/>

At 585, if the selected IU describes a service, the selected
1U is added to a collection of IUs of the runtime platform that
describe services. The collection groups identified 1Us of
services to be installed together with the application. At 590,
a check is performed if all IUs that describe services are
already identified and added to the collection. If all [Us in the
metadata of the runtime platform that describe services are
already identified, process 500 stops without further search-
ing for services referenced by the application.

At 580, if the selected IU describes a module that is not a
service, one or more IUs that provide the selected IU are
added to the list with the identified IUs of the runtime plat-
form that provide the required by the application modules.
Thus, the one or more [Us that directly provide, export or
otherwise reference the selected IU are added to the list to be
checked whether describe services. At 595, a check is per-
formed whether all the IUs in the list are traversed. If there are
1Us in the list that are not traversed process 500 continues at
560. If all IUs in the list are traversed process 500 ends.

FIG. 6 illustrates content and structure 600 of IUs of an
application that is configured to access at least one service,
according to one embodiment. Application ‘A’ IU 610 is the
root [U of the metadata of application ‘A’. In one embodi-
ment, illustrated IUs in FIG. 6 provide further detail to the
content of some of the IUs described in relation to FIG. 4. For
example, application ‘A’ IU 610 may correspond to applica-
tion ‘A’ IU 410 in FIG. 4. Similarly, IUs 620, 630, 640, 622
correspond to [Us 420, 430, 440, 422. Further, [Us 680, 690,
695, 688, 689, 682, 684, and 686 correspond to [Us 480, 490,
495, 488, 489, 482, 484, and 486. Also, runtime platform ‘X’
1U 601 may correspond to structure 401 of IUs of the runtime
platform ‘X’ metadata illustrated in FIG. 4.

According to methods and techniques described herein,
based on the metadata of application ‘A’, all modules required
by IUs 610-640 of the application are identified. Once the
requirements of the application are identified, modules that
provide the required by the application functionality are
searched for in the metadata of the runtime platform ‘X’. In
other words, the capabilities of IUs 601 and 680-695 describ-
ing components of the runtime platform ‘X are traversed. As
aresult, it is identified that package ‘A’ described by IU 622 is
provided by plugin ‘A’ described by 1U 682.

In one embodiment, an application may access a service
via an API of the service such as Java® API or Representa-
tional state transfer (REST) API. Thus, typically, the applica-
tion is configured to access only the API of a service, without
having access to the full implementation of the service. How-
ever, the implementation part of the service is also required
for the application to work properly when deployed and

US 9,256,413 B2

9

installed on the cloud. In one embodiment, the feature repre-
senting the service is identified to be included in the installa-
tion of the application.

According to process 500, a check is performed if plugin
‘A’ is a service. As illustrated in FIG. 6, plugin ‘A’ is not a
service. The process continues by searching if the module that
provides plugin ‘A’ is a service, i.e., feature ‘X’ described by
IU 688. As illustrated in FIG. 6, feature ‘X’ is not a service.
Similarly, the process continues by searching if the module
that provides feature ‘X’ is a service. As illustrated, the mod-
ule that provides feature ‘X’ is service ‘1’ described by U
680. Thus, service ‘1’ is identified as a service that the appli-
cation is configured to access. In one embodiment, service
‘1’, including the modules such as features and plugins of the
service ‘1°, are installed together with the application.

Some embodiments of the invention may include the
above-described methods being written as one or more soft-
ware components. These components, and the functionality
associated with each, may be used by client, server, distrib-
uted, or peer computer systems. These components may be
written in a computer language corresponding to one or more
programming languages such as, functional, declarative, pro-
cedural, object-oriented, lower level languages and the like.
They may be linked to other components via various appli-
cation programming interfaces and then compiled into one
complete application for a server or a client. Alternatively, the
components maybe implemented in server and client appli-
cations. Further, these components may be linked together via
various distributed programming protocols. Some example
embodiments of the invention may include remote procedure
calls being used to implement one or more of these compo-
nents across a distributed programming environment. For
example, a logic level may reside on a first computer system
that is remotely located from a second computer system con-
taining an interface level (e.g., a graphical user interface).
These first and second computer systems can be configured in
a server-client, peer-to-peer, or some other configuration. The
clients can vary in complexity from mobile and handheld
devices, to thin clients and on to thick clients or even other
servers.

The above-illustrated software components are tangibly
stored on a computer readable storage medium as instruc-
tions. The term “computer readable storage medium” should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium” should be taken to include any
physical article that is capable of undergoing a set of physical
changes to physically store, encode, or otherwise carry a set
of instructions for execution by a computer system which
causes the computer system to perform any of the methods or
process steps described, represented, or illustrated herein.
Examples of computer readable storage media include, but
are not limited to: magnetic media, such as hard disks, floppy
disks, and magnetic tape; optical media such as CD-ROMs,
DVDs and holographic devices; magneto-optical media; and
hardware devices that are specially configured to store and
execute, such as application-specific integrated circuits
(“ASICs”), programmable logic devices (“PLDs”) and ROM
and RAM devices. Examples of computer readable instruc-
tions include machine code, such as produced by a compiler,
and files containing higher-level code that are executed by a
computer using an interpreter. For example, an embodiment
of the invention may be implemented using Java, C++, or
other object-oriented programming language and develop-
ment tools. Another embodiment of the invention may be
implemented in hard-wired circuitry in place of, or in com-
bination with machine readable software instructions.

10

15

20

25

30

35

40

45

55

60

65

10

FIG. 71s ablock diagram of an exemplary computer system
700. The computer system 700 includes a processor 705 that
executes software instructions or code stored on a computer
readable storage medium 755 to perform the above-illus-
trated methods of the invention. The computer system 700
includes a media reader 740 to read the instructions from the
computer readable storage medium 755 and store the instruc-
tions in storage 710 or in random access memory (RAM) 715.
The storage 710 provides a large space for keeping static data
where at least some instructions could be stored for later
execution. The stored instructions may be further compiled to
generate other representations of the instructions and
dynamically stored in the RAM 715. The processor 705 reads
instructions from the RAM 715 and performs actions as
instructed. According to one embodiment of the invention,
the computer system 700 further includes an output device
725 (e.g., a display) to provide at least some of the results of
the execution as output including, but not limited to, visual
information to users and an input device 730 to provide a user
or another device with means for entering data and/or other-
wise interact with the computer system 700. Each of these
output devices 725 and input devices 730 could be joined by
one or more additional peripherals to further expand the capa-
bilities of the computer system 700. A network communicator
735 may be provided to connect the computer system 700 to
a network 750 and in turn to other devices connected to the
network 750 including other clients, servers, data stores, and
interfaces, for instance. The modules of the computer system
700 are interconnected via a bus 745. Computer system 700
includes a data source interface 720 to access data source 760.
The data source 760 can be accessed via one or more abstrac-
tion layers implemented in hardware or software. For
example, the data source 760 may be accessed by network
750. In some embodiments the data source 760 may be
accessed via an abstraction layer, such as, a semantic layer.

A data source is an information resource. Data sources
include sources of data that enable data storage and retrieval.
Data sources may include databases, such as, relational,
transactional, hierarchical, multi-dimensional (e.g., OLAP),
object oriented databases, and the like. Further data sources
include tabular data (e.g., spreadsheets, delimited text files),
data tagged with a markup language (e.g., XML data), trans-
actional data, unstructured data (e.g., text files, screen scrap-
ings), hierarchical data (e.g., data in a file system, XML data),
files, a plurality of reports, and any other data source acces-
sible through an established protocol, such as, Open Data-
Base Connectivity (ODBC), produced by an underlying soft-
ware system (e.g., ERP system), and the like. Data sources
may also include a data source where the data is not tangibly
stored or otherwise ephemeral such as data streams, broadcast
data, and the like. These data sources can include associated
data foundations, semantic layers, management systems,
security systems and so on.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however that the invention can be practiced without one or
more of the specific details or with other methods, compo-
nents, techniques, etc. In other instances, well-known opera-
tions or structures are not shown or described in details to
avoid obscuring aspects of the invention.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the different
embodiments of the present invention are not limited by the
illustrated ordering of steps, as some steps may occur in
different orders, some concurrently with other steps apart
from that shown and described herein. In addition, not all

US 9,256,413 B2

11

illustrated steps may be required to implement a methodology
in accordance with the present invention. Moreover, it will be
appreciated that the processes may be implemented in asso-
ciation with the apparatus and systems illustrated and
described herein as well as in association with other systems
not illustrated.

The above descriptions and illustrations of embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize. These modifications can be made
to the invention in light of the above detailed description.
Rather, the scope of the invention is to be determined by the
following claims, which are to be interpreted in accordance
with established doctrines of claim construction.

What is claimed is:

1. A computer implemented method to automatically iden-
tify services consumed by a computer application, the method
comprising:

receiving a first plurality of application installable units

describing a first plurality of application artifacts of the
computer application;
determining at least one service required by the computer
application from a plurality of services provided by a
cloud platform, wherein the at least one service is deter-
mined by searching in a first graph of dependencies
among the first plurality of application installable units;

determining a second plurality of service artifacts provid-
ing functionality of the at least one service by searching
a second graph of dependencies among a second plural-
ity of cloud platform installable units, wherein a subset
from the second plurality of cloud platform installable
units corresponds to the second plurality of service arti-
facts;

upon determining the second plurality of service artifacts

and prior installation of the computer application,
selecting the second plurality of service artifacts and the
first plurality of application artifacts for installation of
the computer application, wherein the second plurality
of service artifacts and the first plurality of application
artifacts are minimum required artifacts for the installa-
tion of the computer application;

storing the first plurality of application installable units and

the subset from the second plurality of cloud platform
installable units with the first plurality of application
artifacts in a composite repository, and

based on the information included in the composite reposi-

tory, installing the first plurality of application artifacts

together with the second plurality of service artifacts;

wherein installing the first plurality of application artifacts

of the computer application together with the second

plurality of service artifacts comprises:

instantiating at least one virtual machine in a cloud sys-
tem environment to provide an independent runtime
platform for the computer application, and

installing the computer application on the at least one
virtual machine including the at least one service.

2. The method of claim 1, wherein determining the at least
one service comprises:

identifying at least one installable unit of the first plurality

of application installable units that imports at least one
module associated with the at least one service.

10

15

20

25

30

35

40

45

55

60

65

12

3. The method of claim 2 further comprising:

identifying an installable unit from the second plurality of
cloud platform installable units that corresponds to the at
least one module.

4. The method of claim 3, wherein identifying the install-
able unit from the second plurality of cloud platform install-
able units further comprises:

searching the second plurality of cloud platform installable

units for direct or indirect export of the at least one
module.

5. The method of claim 1 further comprising:

based on the subset from the second plurality of cloud

platform installable units, storing the second plurality of
service artifacts together with the first plurality of appli-
cation artifacts in a composite repository.

6. A computer system to automatically identify services
consumed by a computer application, the system including:

at least one processor and memory for executing program

code, which when executed cause the computer to per-

form operations comprising:

receiving a first plurality of application installable units
describing a first plurality of application artifacts of
the computer application;

determining at least one service required by the com-
puter application from a plurality of services provided
by a cloud, wherein the at least one service is deter-
mined by searching in a first graph of dependencies
among the first plurality of application installable
units;

determining a second plurality of service artifacts pro-
viding functionality of the at least one service by
searching a second graph of dependencies among a
second plurality of cloud platform installable units,
wherein a subset from the second plurality of cloud
platform installable units corresponds to the second
plurality of service artifacts; and

upon determining the second plurality of service arti-
facts and prior installation of the computer applica-
tion, selecting the second plurality of service artifacts
and the first plurality of application artifacts for instal-
lation of the computer application, wherein the sec-
ond plurality of service artifacts and the first plurality
of application artifacts are minimum required arti-
facts for the installation of the computer application.

7. A computer system to automatically identify services
consumed by a computer application, the system including:

at least one processor and memory for executing program

code, which when executed cause the computer to per-

form operations comprising:

receiving a first plurality of application installable units
describing a first plurality of application artifacts of
the computer application;

determining at least one service required by the com-
puter application from a plurality of services provided
by a cloud, wherein the at least one service is deter-
mined by searching in a first graph of dependencies
among the first plurality of application installable
units;

determining a second plurality of service artifacts pro-
viding functionality of the at least one service by
searching a second graph of dependencies among a
second plurality of cloud platform installable units,
wherein a subset from the second plurality of cloud
platform installable units corresponds to the second
plurality of service artifacts;

upon determining the second plurality of service arti-
facts and prior installation of the computer applica-

US 9,256,413 B2

13

tion, selecting the second plurality of service artifacts
and the first plurality of application artifacts for instal-
lation of the computer application, wherein the sec-
ond plurality of service artifacts and the first plurality
of application artifacts are minimum required arti-
facts for the installation of the computer application;
storing the first plurality of application installable units
and the subset from the second plurality of cloud
platform installable units with the first plurality of
application artifacts in a composite repository, and
based on the information included in the composite
repository, installing the first plurality of application
artifacts of the computer application together with the
second plurality of service artifacts;
wherein installing the first plurality of artifacts of the
computer application together with the second plural-
ity of artifacts comprises:
instantiating at least one virtual machine in a cloud
system environment to provide independent runt-
ime platform for the computer application, and
installing the computer application on the at least one
virtual machine including the at least one service.
8. The system of claim 7 further comprising:
identifying an installable unit from the second plurality of
cloud platform installable units that corresponds to the at
least one module.

9. The system of claim 8, wherein identifying installable
unit from the second plurality of cloud platform installable
units further comprises:

searching the second plurality of cloud platform installable

units for direct or indirect export of the at least one
module.

10. A non-transitory computer readable medium storing
instructions thereon, which when executed by a processor
cause a computer system to:

receive a first plurality of application installable units

describing a first plurality of application artifacts of the
computer application;
determine at least one service required by the computer
application from a plurality of services provided by a
cloud platform, wherein the at least one service is deter-
mined by searching in a first graph of dependencies
among the first plurality of application installable units;

determine a second plurality of service artifacts providing
functionality of the at least one service by searching a
second graph of dependencies among a second plurality
of cloud platform installable units, wherein a subset
from the second plurality of cloud platform installable
units corresponds to the second plurality of service arti-
facts;

10

15

20

25

30

35

40

45

14

upon determining the second plurality of service artifacts
and prior installation of the computer application,
selecting the second plurality of service artifacts and the
first plurality of application artifacts for installation of
the computer application, wherein the second plurality
of service artifacts and the first plurality of application
artifacts are minimum required artifacts for the installa-
tion of the computer application;

storing the first plurality of application installable units and
the subset from the second plurality of cloud platform
installable units with the first plurality of application
artifacts in a composite repository, and

based on the information included in the composite reposi-
tory, installing the first plurality of application artifacts
of the computer application together with the second
plurality of service artifacts;

wherein installing the first plurality of artifacts of the com-
puter application together with the second plurality of
artifacts comprises:
instantiating at least one virtual machine in a cloud sys-
tem environment to provide independent runtime
platform for the computer application, and
installing the computer application on the at least one
virtual machine including the at least one service.
11. The computer-readable medium of claim 10, wherein
determining the at least one service comprises:

identifying at least one installable unit of the first plurality
of application installable units that imports at least one
module associated with the at least one service.

12. The computer-readable medium of claim 11, wherein

the instructions to further cause the computer to:

identifying an installable unit from the second plurality of
cloud platform installable units that corresponds to the
the at least one module.

13. The computer-readable medium of claim 12, wherein
identifying the IU of the second plurality of IUs correspond-
ing to the at least one service further comprises:

searching the second plurality of cloud platform installable

units for direct or indirect export of the at least one
module.

14. The computer-readable medium of claim 10, wherein
the instructions to further cause the computer to:

based on the subset from the second plurality of cloud

platform installable units, storing the second plurality of
service artifacts together with the first plurality of appli-
cation artifacts in a composite repository.

#* #* #* #* #*

